Basic operation
>> $1+3$
ans $=$
4
>> 13-4
ans $=$
9
>> $12 * 3$
ans $=$
36
>> 36/3
ans $=$
12

Logical operations
$\gg x=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right] ; y=\left[\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}\right]$
$y=$
$\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}$
$\gg x=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right] ; y=\left[\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}\right] ;$
>> $x<y$
ans $=$
1×5 logical 배열
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$
$\gg \mathrm{x}<=\mathrm{y}$
ans $=$
1×5 logical 배열
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$
>> $x==y$
ans $=$
1×5 logical 배열
$0 \quad 0 \quad 1000$
>> x >= y
ans $=$
1×5 logical 배열
$\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}$
>> x y
ans $=$
1×5 logical 배열
$0 \quad 0 \quad 0 \quad 1 \quad 1$

For loop, while loop and if

```
>> for x=0:2:10
a = 2^x
end
>> a
a =
```

 1024
 >> $a=3 ;$
\gg if $a<1$
b $=\mathrm{a}+1$
else
$\mathrm{c}=\mathrm{a}+2$
end
c =
5
$\gg a=1 ;$
>> while a < 4
$a=a+1$
end
$\mathrm{a}=$
2
$\mathrm{a}=$
3
$\mathrm{a}=$
4
>> $\mathrm{a}=1$;
>> while a < 4
a $=\mathrm{a}+1$
end
a $=$
2
$\mathrm{a}=$
3
$\mathrm{a}=$

4

Inline function

```
>> f = inline('x.^3+6*x-2', 'x')
f =
```

 인라인 함수:
 \(f(x)=x \cdot \wedge 3+6 * x-2\)
 >> $f\left(\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]\right)$
ans $=$
$43 \quad 86 \quad 153$
>> $\mathrm{x}=\operatorname{linspace(0,~100,~10)~}$
$x=$
1 ~ 8번 열
$0 \quad 11.1111$
22.2222
33.3333
44.4444
55.5556
66.666

9 ~ 10번 열
88.8889100 .0000

Plot

```
>> t = linspace(0, 2*pi, 100); x = cos(t); y = sin(t);
>> plot(x,y,'-o'); axis('equal')
```

Figure 1
파일 편집 보기 삽입 툴 데스크탑 창 도움말

Matrix indexing

```
>> A = rand(3, 5);
A(:,1:3)
ans =
\begin{tabular}{lll}
0.1707 & 0.3111 & 0.1848 \\
0.2277 & 0.9234 & 0.9049 \\
0.4357 & 0.4302 & 0.9797
\end{tabular}
> A(2, 3)
ans =
    0.9049
>> A(2:3, 1:4)
ans =
\(0.2277 \quad 0.9234 \quad 0.9049 \quad 0.1111\)
    0.4357 0.4302 0.9797 0.2581
```

Size and Length

```
>> a = [11 2 3 4];
A = ones(3,4);
length(a)
ans =
    4
>> size(A)
ans =
    3 4
```

Matrix Aggregation (sum and max)
sum($A, 1$) \% columnwise sum
ans $=$
$\begin{array}{llll}3 & 3 & 3 & 3\end{array}$
>> $\operatorname{sum}(A, 2) \%$ rowwise sum
ans =
4
4
4
>> sum(A, "all")
ans $=$
12

```
>> max(A) % columnwise max
ans =
    1 1 1 1
>> max(A, [], 2) % rowwise max
ans =
    1
    1
    1
>> max(A, [], 'all') % global max
ans =
    1
```

Absolute value

```
>> A = rand(3,4)-0.5;
>> abs(A)
ans =
\begin{tabular}{llll}
0.1028 & 0.3826 & 0.0758 & 0.2375 \\
0.2112 & 0.2033 & 0.0079 & 0.3010 \\
0.2783 & 0.1812 & 0.4145 & 0.4708
\end{tabular}
```

Read and Write

```
>> fp = fopen('test1.m', 'w');
>> fprintf(fp, '%d %d\n', 1, 2);
>> fprintf(fp, '%f %f\n', 3.5, 4.5);
>> fprintf(fp, '%e %e\n', 100, 1000);
>> fclose(fp);
>> a = load('test1.m');
>> a
a =
    1.0e+03 *
    0.0010 0.0020
    0.0035 0.0045
    0.1000 1.0000
```

