```
MATLAB을 처음 사용한다면 시작하기를 참조하십시오.
    >> \(1+3\)
    ans \(=\)
        4
    >> 13-4
    ans \(=\)
    9
    >> \(12 * 3\)
    ans \(=\)
        36
    >> 36/3
    ans \(=\)
        12
    >> \(\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]\)
    ans \(=\)
        \(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\)
    \(\gg x=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]\)
    \(\mathrm{x}=\)
        \(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\)
    >> \(y=\left[\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}\right]\)
    \(\mathrm{y}=\)
\(f_{x}\)
```



```
MATLAB을 처음 사용한다면 시작하기를 참조하십시오.
    >> \(\mathrm{x}<\mathrm{y}\)
    ans \(=\)
        \(1 \times 5\) logical 배옃
        11000
    \(\gg \mathrm{x}<=\mathrm{y}\)
    ans \(=\)
        \(1 \times 5\) logical 배옃
        11100
    >> \(\mathrm{x}==\mathrm{y}\)
    ans \(=\)
        \(1 \times 5\) logical 배열
        \(\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\)
    \(\gg x>=y\)
    ans \(=\)
    \(1 \times 5\) logical 배열
    \(\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}\)
    \(\gg x>y\)
    ans \(=\)
    \(1 \times 5\) logical 배열
        \(\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}\)
    \(\gg\) for \(x=0: 2: 10\)
    \(a=2^{\wedge} x\)
    <
\(>\)
```

```
며ᄋ려ᄋ 차ᄋ
    >> for x=0:2:10
    a=2^x
    end
    a =
        1
    a =
        4
    a =
    1 6
    a =
        6 4
    a =
    256
    a =
        1024
>> a=3
a =
    3
```

MATLAB을 처음 사용한다면 시작하기를 참조하십시오.
(1)

```
명령 창
    \(\gg\) if \(a<1\)
    \(b=a+1\)
    else
    \(c=a+2\)
    end
    \(c=\)
        5
    >> \(a=1\)
    \(\mathrm{a}=\)
    1
    >> while a<4
    \(a=a+1\)
    end
    \(\mathrm{a}=\)
    2
    \(\mathrm{a}=\)
        3
    \(\mathrm{a}=\)
    4
    \(\gg a=1 ; b=2 ; c=3\)
    \(c=\)
    3
\(f_{\underset{v}{ }} \gg \mathrm{a}=1 ; \mathrm{b}=2, \mathrm{c}=3\);
    <
```

>> a=1; b=2, c=3;

```
\(\mathrm{b}=\)
    \({ }^{2}\)
>> plot (x,y,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerSize',10)
>> \(f=\) inline (' \(x^{\wedge} 3+6^{\star} x-2\) ', ' \(x^{\prime}\) )
\(\mathrm{f}=\)
    인라인 함수:
    \(f(x)=x^{\wedge} 3+6^{*} x-2\)
\(\gg f(3)\)
ans \(=\)
    43
> \(\mathrm{f}([3,4,5])\)
다음 사용 중 오류가 발생함: inlineeval
인라인 표현식의 오류 \(=\Rightarrow x^{\wedge} 3+6^{*} x-2\)
차원이 정확하지 않아 행혈을 거듭제곱할 수 없습니다. 행렬이 정사각 행혈이고 지수 값이 스칼라인지
확인하십시오. 행켤의 각 요소에 대해 개별적으로 연산을 수행하려면 요소별 거듭제곱 연산에
POWER (.^) 를 사용하십시오.
오류 발생: 인덱싱 (23번 라인)
    INLINE_OUT_ = inlineeval(INLINE_INPUTS_, INLINE_OBJ_.inputExpr, INLINE_OBJ_.expr); \%\#\#k<DILEVAL>
> \(\left.\mathrm{f}\left(\begin{array}{lll}3 & 4 & 5\end{array}\right]\right)\)
다음 사용 중 오류가 발생함: inlineeval
인라인 표현식의 오류 \(=>x^{\wedge} 3+6^{\star} x-2\)
    차원이 정확하지 앉아 행혈을 거듭제곱할 수 없습니다. 행렬이 정사각 행렬이고 지수 값이 스칼라인지
    차원이 정확하지 앆아 행렬을 거듭제곱할 수 없습니다. 행혈이 정사각 행혈이고 지수 값이 소
확인하십시오. 행렬의 각 요소에 대해 개혈적으로 연산을 수행하렴ㄴㄴ 요소별 거듭제곱 연산에
    POWER (.^) 를 사용하십시오.
오류 발생: 인덱싱 (23번 라인)
    INLINE_OUT_ = inlineeval(INLINE_INPUTS_, INLINE_OBJ_.inputExpr, INLINE_OBJ_.expr); \%\#\#k<DILEVAL>
> f=inline('x.^3+6*x-2','x')
\(\mathrm{f}=\)
    인라인 함수:
    \(f(x)=x .^{\wedge} 3+6^{*} x-2\)
> \(\left.\mathrm{f}\left(\begin{array}{lll}3 & 4 & 5\end{array}\right]\right)\)
ans \(=\)
    \(43 \quad 86 \quad 15\)
>> \(x=\) inspace \((0,5,6)\)
\(\mathrm{x}=\)
\(\gg y=1\) inspace \((0,2 \star\) pi, 100) ; \(x=2 \star \cos (t) ; y=2 \star \sin (t)\)
' \(t\) '은 (는) 인식할 수 없는 함수 또는 변수입니다.
\(\gg t=1\) inspace \(\left(0,2^{*}\right.\) pi, 100) ; \(x=2 * \cos (t) ; y=2 * \sin (t)\)
    \(\gg\) plot ( \(\mathrm{x}, \mathrm{y}\) )
    >> plot(x,y,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerSize',10)
    >> \(x=10\); \(y=\left[\begin{array}{llll}5 & 4 & 3 & 2\end{array}\right]\);
    >> plot(x,y,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerSize',10)
    \(\gg t=1\) inspace \((0,2 * \mathrm{pi}, 100)\); \(\mathrm{x}=2 * \cos (\mathrm{t}) ; \mathrm{y}=2^{*} \sin (\mathrm{t})\);
    \(\gg\) plot \((x, y)\)
    \(\gg\) plot \((\mathrm{x}, \mathrm{y})\).
    \(\gg \operatorname{plot}(\mathrm{x}, \mathrm{y})\)
\(\gg \operatorname{plot}(\mathrm{x}, \mathrm{y})\)
    \(\gg \operatorname{plot}(\mathrm{x}, \mathrm{y})\)
    \(\gg\) plot \((\mathrm{x}, \mathrm{y})\); axis equal,
    \(\gg\) plot \((\mathrm{x}, \mathrm{y})\); axis image;
    \(\gg\) ones ( 3
ans \(=\)
    \(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\)


Figure 1. from "plot(x,y, '--rs', 'LineWidth', 2, 'MarkerEdgeColor', 'k', ... 'Markersize', 10)"



Figure 2.(left) from \({ }^{\prime p l o t}(x, y) "\)
Figure 3. (right) from "plot( \(x, y\) ); axis square;"



Figure 4. (left) from \(" \operatorname{plot}(x, y)\); axis equal;"

Figure 5. (right) from "plot( \(x, y\) ); axis image;"
```

>> zeros(2)
ans =
0}

```
\(>C=[1,2,3]\); length (C)
ans \(=\)
    3
> \(A=\left[\begin{array}{llllllll}1 & 2 & 3 ; & 5 & 6 ; 7 & 8 & 9\end{array}\right.\);
\(\gg \operatorname{sum}(\mathrm{A})\)
ans \(=\)
    \(12 \quad 15 \quad 18\)
>> abs (-3)
ans \(=\)
    3
>> fp=fopen('test.m','w'),
>> fprint (fp, 'sd \%d\n',1,2);
    'fprint'은(는) 인식할 수 없는 함수 또는 변수입니다
    >> fprintf(fp,' \%d \%d\n',1,2);
    \(\gg\) fprintf(fp,'\%f \%f\n',3.5,4.5);
    > fprintf( fp ,' \(\% \mathrm{e} \% \mathrm{e} \backslash \mathrm{n}^{\prime}, 100,1000\) ) ;
    >> fclose(fp);
    >> a=load('test.m')
    \(\mathrm{a}=\)
    1.0e+03 *
        \(0.0010 \quad 0.0020\)
        0.00350 .0045
        \(0.1000 \quad 1.0000\)
    >> Random_Matrix \(=\) rand \((2,3)\)
Random Matrix \(=\)
\begin{tabular}{lll}
0.8147 & 0.1270 & 0.6324 \\
0.9058 & 0.9134 & 0.0975
\end{tabular}
>> rand('seed',3)
>> rand \((2,3)\)
ans \(=\)
    \(0.5387 \quad 0.0512 \quad 0.3010\)
    \(\begin{array}{lll}0.3815 & 0.2851 & 0.1277\end{array}\)
\(f_{x} \gg \mid\)```

