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2. (128A) I S a, éonver es, and if 1 > a, > 0 for all
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n, which of the following series are convergent? Explain.
(a) Find the area of the region that lies inside both curves
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(b) Find all points of intersection of those curves.
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4. (12 7A) Determine whether the following series converges

(a) For which positive integers k is the following series

convergent?

(b) If k is a positive integer, find the radius of convergence
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5. (127) Test the following series for (a) absolute conver-

gence and (b) conditional convergence
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6. (137)
(a) Expand f(x) = Incosz in powers of .

(b) Use Taylor polynomials to estimate /e to within 0.01.
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7. (1373) Lines l; and Iz in space are parallel to the vectors
dy and dg, respectively. P is a point on /; and @ is a point on
lz. Ifl; and 5 are skew (i.e. nonintersecting and nonparallel)
lines, express the distance between two lines using Fé and

d1 X dz.

8. (12%) Find the area of the surface generated by revolv-

ing one arch of the cycloid
z =a(t —sint), y=a(l —cost)

about the z-axis for a > 0.




